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Optimize then discretize, or discretize then optimize?

Full-order model
ODE

dx
dt

= f (x , t)

res.
min.

Galerkin ROM
ODE

d x̂G
dt

(x , t) = arg min
z
‖Φz − f (x , t)‖2

2

time discretization

Galerkin ROM
O∆E

ΦT rn
(

Φx̂nG
)

= 0,
n = 1, ... , M

time discretization

Full-order model
O∆E

rn (xn) = 0,
n = 1, ... , M

res.
min.

LSPG ROM
O∆E

x̂nL = arg min
z
‖Arn (Φz) ‖2

2,

n = 1, ... , M

Galerkin: continuous-residual minimization

LSPG [C. et al., 2011]: discrete-residual minimization

Comparative analysis: K. Carlberg, M. Barone, H. Antil, “Galerkin v.
least-squares Petrov–Galerkin projection in nonlinear model reduction,”
Journal of Computational Physics, 330:693–734, 2017.
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Cavity-flow problem Collaborator: M. Barone (SNL)

Unsteady, compressible
Navier–Stokes

DES turbulence model

Finite-volume discretization

BDF2 linear multistep time
integrator

M∞ = 0.6

Re = 6.3× 106

1.2× 106 degrees of
freedom

CFD code: AERO-F
[Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD modes Φ (energy component)

(a) mode 1 (b) mode 21 (c) mode 101

(d) mode 201 (e) mode 401
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Galerkin and LSPG responses for basis dimension p = 564
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(g) LSPG

- Galerkin ROMs produce non-physical solutions

LSPG ROMs

+ accurate and stable (most time steps)
- more expensive than the FOM (1.3 hours>1 hour, 48 CPU)
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Sample mesh [C. et al., 2013]

x̂n = arg min
ẑ∈Rp

‖ (PΦR)+ P︸ ︷︷ ︸
AGNAT

rn (Φẑ) ‖2
2

AGNAT: gappy POD [Everson and Sirovich, 1995] approx of residual
Sample mesh: Extract mesh subset needed to compute Prn

Related : RID [Ryckelynck, 2005], subgrid [Haasdonk et al., 2008]

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance (t ≤ 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

+ 229x CPU-hour savings

FOM: 5 hour x 48 CPU
GNAT ROM: 32 min x 2 CPU
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Why is LSPG more accurate than Galerkin? [C. et al., 2017]

Theorem (Local a posteriori bounds: BDF schemes)

If the following conditions hold:

1 ∃κ > 0 such that ‖f (x , ·)− f (y , ·)‖2 ≤ κ‖x − y‖2,
∀x , y ∈ RN

2 ∆t small enough such that 0 < h := |α0| − |β0|κ∆t

3 A BDF scheme is employed for time integration, then

‖δxn
G‖2 ≤

1

h
‖rnG (Φx̂n

G )‖2+
1

h

k∑
`=1

|α`|‖δxn−`
G ‖2

‖δxn
L‖2 ≤

1

h
min

y∈Ran(Φ)
‖rnP(y)‖2+

1

h

k∑
`=1

|α`|‖δxn−`
L ‖2

δxn
G := xn

? −Φx̂n
G . δxn

L := xn
? −Φx̂n

L

LSPG minimizes the error bound sequentially in time!
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Structure preservation in model reduction
Stability [Moore, 1981, Bond and Daniel, 2008, Amsallem and Farhat, 2012,

Kalashnikova et al., 2014]

Second order [Freund, 2005, Salimbahrami, 2005, Chahlaoui, 2015]

Delay
[Beattie and Gugercin, 2008, Michiels et al., 2011, Schulze and Unger, 2015]

Bilinear [Zhang and Lam, 2002, Benner and Damm, 2011,

Benner and Breiten, 2012, Flagg and Gugercin, 2015]

Inf-sup stability [Rozza and Veroy, 2007, Gerner and Veroy, 2012,

Rozza et al., 2013, Ballarin et al., 2014]

Passivity [Phillips et al., 2003, Sorensen, 2005, Wolf et al., 2010]

Energy conservation
[An et al., 2008, Farhat et al., 2014, Farhat et al., 2015]

Lagrangian structure [Lall et al., 2003, C. et al., 2015]

(Port-)Hamiltonian [Polyuga and van der Schaft, 2008,

Beattie and Gugercin, 2011, Afkham and Hesthaven, 2016,

Chaturantabut et al., 2016, Peng and Mohseni, 2016]

What structure should we preserve in finite-volume models?
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Finite-volume discretization: full-order model

Full-order model ODE: dx
dt = f (x , t)

a xI(i ,j) = 1
|Ωj |

∫
Ωj

ui (~x , t)d~x

a fI(i ,j) = − 1
|Ωj |

∫
Γj
ui (~x , t)v`(~x , t)n`(~x)d~x

Conserved variables ui , i = 1, ... , nu
`-component of velocity v`, ` = 1, ... , d with d ∈ {1, 2, 3}
`-component of normal n`, ` = 1, ... , d

I : {1, ... , nu} × {1, ... ,NΩ} → {1, ... ,N}, N = nuNΩ

Full-order model O∆E: rn (xn) = 0, n = 1, ... ,M

rnI(i ,j) =
1

|Ωj |

∫
Ωj

ui (~x , tn+1)− ui (~x , tn)d~x +
1

|Ωj |

tn+1∫
tn

∫
Γj

ui (~x , t)v`(~x , t)n`(~x)d~xdt

rnI(i ,j): violation of conservation in ui over Ωj and [tn, tn+1].
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Finite-volume discretization: LSPG ROM
LSPG ROM: minimize

z
‖Arn (Φz) ‖2

2

+ Minimizes (weighted) sum of squares
of conservation-law violations

- Does not ensure conservation
anywhere!

LSPG-FV ROM: minimize
z

‖Arn (Φz) ‖2
2

subject to r̄n(Φz) = 0

r̄nĪ(i ,j) =
1

|Ω̄j |

∫
Ω̄j

ui (~x , tn+1)− ui (~x , tn)d~x +
1

|Ω̄j |

tn+1∫
tn

∫
Γ̄j

ui (~x , t)v`(~x , t)n`(~x)d~xdt

Ī : {1, ... , nu} × {1, ... ,NΩ̄} → {1, ... , N̄}, with N̄ = nuNΩ̄

+ Minimizes sum of squares of conservation-law violations

+ Ensure conservation laws are enforced over NΩ̄ subdomains
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LSPG-FV: three cases

rn : RN → RN Φ ∈ RN×p
? r̄n : Rp → RN̄

1 Underdetermined constraint problem (p > N̄)

minimize
z

‖Arn (Φz) ‖2
2

subject to r̄n(Φz) = 0

Solve with sequential quadratic programming (SQP)
+ Conservation over Ω̄j , j = 1, ... ,NΩ̄ ensured

2 Well-posed constraint problem (p = N̄)

r̄n(Φz) = 0

3 Overdetermined constraint problem (p < N̄)

minimize
z

‖Arn (Φz) ‖2
2 + µ‖Ār̄n (Φz) ‖2

2

Penalty parameter µ ∈ R+

- No conservation guaranteed
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Hyper-reduction

ekGNAT-FV ROM: min.
z
‖(PΦR)+ P︸ ︷︷ ︸

AGNAT

rn (Φz) ‖2
2

a subject to r̄n(Φz) = 0

r̄nĪ(i ,j) =
1

|Ω̄j |

∫
Ω̄j

ui (~x , tn+1)− ui (~x , tn)d~x +
1

|Ω̄j |

tn+1∫
tn

∫
Γ̄j

ui (~x , t)v`(~x , t)n`(~x)d~x

︸ ︷︷ ︸
nonlinear flux

dt

a = a(i , j)TΦ︸ ︷︷ ︸
linear (precompute)

(x̂n+1 − x̂n) + 1
|Ω̄j |

tn+1∫
tn

b(i , j)Tg(x(t))︸ ︷︷ ︸
nonlinear

dt

Interface flux gJ (i ,k) =
∫
ek
ui (~x , t)v`(~x , t)n̄`(~x)d~x

J : {1, ... , nu} × {1, ... ,Ne} → {1, ... ,Ng}, with Ng = nuNe

a : {1, ... , nu} × {1, ... ,NΩ̄} → RN
+

b : {1, ... , nu} × {1, ... ,NΩ̄} → {−1, 0, 1}Ng

`-component of edge normal n̄`, ` = 1, ... , d

Approximate interface flux g : RN → RNg using gappy POD.
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

Offline. Compute:
1 Φg ∈ RNg×ng

∗ (POD)
2 Pg ∈ {0, 1}ns×Ng (sample-mesh edges)

Online. Approximate flux via gappy POD:

1. g(x) ≈ g̃(x) = Φg ĝ(x) 2. ĝ(x) = arg min
ĝ
‖PgΦg ĝ −Pgg(x)‖2

c

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

ĝ

GNAT-FV ROM: min.
z

‖(PΦR)+ Prn (Φz) ‖2
2

a subject to r̃n(Φz) = 0

r̃nĪ(i ,j) = a(i , j)TΦ︸ ︷︷ ︸
linear (precompute)

(x̂n+1−x̂n)+
1

|Ω̄j |

tn+1∫
tn

b(i , j)TΦg (PgΦg )+︸ ︷︷ ︸
linear (precompute)

Pgg(x)︸ ︷︷ ︸
sample flux

dt
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Example: Quasi-1D Euler equation1.1 One-dimensional Euler equation: steady

• Problem description
First numerical example solves a quasi 1D-Euler equation for an inviscid compressible flow
in one dimensional nozzle with continuously varying crossectional area. The nozzle has a
bottleneck in the middle. Figure 1 shows the cross-sectional area of the nozzle along the major
axis.
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Figure 1: Cross-sectional area of the nozzle

The geometry of the nozzle and gas property are defined as they follow:

– The length of the nozzle is 0.25 m

– The specific heat ratio (�) is 1.3

– The gas constant (R) is 355.4

– The total temperature is 2800 K

The discretizations are defined as it follows:

– Number of control volumes : varies throughout this section

– Number of time steps : 29

– The time step size : 0.01

A parametric reduced order model based on LSPG is constructed. A parameter Mb is consid-
ered:

– Mb : An initial Mach number at the middle

Four sample points for Mb are used (Mb 2 {1.7, 1.8, 1.9, 2.0}). Figure 2 shows initial Mach
number at middle.

The labels of curves and figures are as they follow:
FOM : full order model
G : Galerkin
PG : LSPG
GNAT : Typical GNAT
PGcnstd or PGC : LSPG with constraint of conservation law
GNATcnstd or GC : GNAT with constraint of conservation law
GNATcnstd(FOM) or GCF : GNATcnstd with gappy flux of sanpshots from FOM
GNATcnstd(PG) or GCPG : GNATcnstd with gappy flux of snapshots from PG
GNATcnstd(GNAT) or GCG : GNATcnstd with gappy flux of snapshots from GNAT
GNATcnstd(PGcnstd) or GCPGC : GNATcnstd with gappy flux of snapshots from PG
GNATcnstd(GNATcnstd) or GCGC : GNATcnstd with gappy flux of snapshots from GNATc-
nstd
nC : Number of constraints
nD : Number of reduced state basis vectors
nF : Number of reduced flux basis vectors nQ : Number of reduced forcing term basis vectors µ
: penalty parameter nVol : Number of finite volumes nS : Number of sample points in residual
approximation dt : Time step size nT : Number of time steps

3
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nu = 3 conserved quantities
u = (ρ, ρv ,E )

Number of control volumes
NΩ = 100

Total time steps M = 30

Time step ∆t = 0.01

Training: Mach number
M ∈ {1.7, 1.8, 1.9, 2.0}
Online: Mach number
M = 1.75

ROM parameters: p = 5,
ng = 20
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Global conservation (NΩ̄ = 1)
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full-order model
Galerkin
LSPG
LSPG-FV
GNAT
GNAT-FV (exact constraints)
GNAT-FV

+ Global conservation exactly satisfied for exact constraints

+ GNAT-FV: accurate conservation-law approximation
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Global conservation (NΩ̄ = 1)
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Conservation-law constraints: small (but nonzero) error in
globally conserved quantities
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Global conservation (NΩ̄ = 1)
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+ Relative state error roughly matches global conservation error
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Varying number of subdomains NΩ̄ (penalty parameter µ = 103)
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(h) LSPG-FV
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(i) GNAT-FV

+ Conservation-law constraints reduce error by 10×
+ GNAT-FV approximately the same accuracy as LSPG-FV

+ Best accuracy for global conservation (NΩ̄ = 1)
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Conclusions

Structure-preserving model reduction for nonlinear
finite-volume models

Conservation-law violation equality constraints
Enforces conservation over subdomains
Hyper-reduction by applying gappy POD flux approximation

Numerical experiments

+ Constraints reduced both state and global conservation errors
Best results obtained for global conservation (NΩ̄ = 1)
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Questions?
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GNAT: Pareto optimal for small wall times

+ GNAT-FV, LSPG-FV: Pareto optimal for smaller errors
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Karhunen–Loève procedure for gappy data.
Journal of the Optical Society of America A, 12(8):1657–1664.

Farhat, C., Avery, P., Chapman, T., and Cortial, J. (2014).
Dimensional reduction of nonlinear finite element dynamic
models with finite rotations and energy-based mesh sampling
and weighting for computational efficiency.
International Journal for Numerical Methods in Engineering,
98(9):625–662.

Farhat, C., Chapman, T., and Avery, P. (2015).

Structure-preserving model reduction for finite-volume models Carlberg, Choi, Sargsyan 24



Structure-preserving, stability, and accuracy properties of the
energy-conserving sampling and weighting method for the
hyper reduction of nonlinear finite element dynamic models.
International Journal for Numerical Methods in Engineering,
102(5):1077–1110.

Farhat, C., Geuzaine, P., and Brown, G. (2003).
Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of
an F-16 fighter.
Computers & Fluids, 32(1):3–29.

Flagg, G. and Gugercin, S. (2015).
Multipoint volterra series interpolation and h 2 optimal model
reduction of bilinear systems.
SIAM Journal on Matrix Analysis and Applications,
36(2):549–579.

Freund, R. W. (2005).

Structure-preserving model reduction for finite-volume models Carlberg, Choi, Sargsyan 24
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